
J .  Fluid Mech. (1982), vol. 120, p p ,  463-473 

Printed in Great Britain 
463 
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The influence of leading-edge separation vortices on the Weis-Fogh (1973) lift- 
generation mechanism for insect hovering is investigated. The analysis employs a 
vortex-shedding model (Edwards 1954; Cheng 1954) and represents an extension of 
Lighthill’s (1973, 1975) analysis of an inviscid model without separated vortices. 
Results of the study compare reasonably well with observations on a laboratory 
model at high Reynolds number (Maxworthy 1979), confirming that vortex separation 
significantly enhances the initial circulation on each of the wings. Unlike the un- 
separated-model solution, this circulation was found to depend on the history of the 
wing motion and to increase with a large opening angle. 

1. Introduction 
Weis-Fogh (1973, 1975) described a model of insect flight which suggested a new 

mechanism for generating circulation. This technique requires the successive opera- 
tions of the opening of a V-shaped wing segment and the subsequent separation of 
the two segments. Weis-Fogh’s idea consists of producing equal and opposite cir- 
culations around the two segments without violating Kelvin’s Theorem (and without 
shedding vortices), and subsequent generation of a lift from this circulation when the 
wings are parted. 

The two dimensional definition of the Weis-Fogh mechanism is given in detail in 
Lighthill ( 1  973), and it is shown schematically in figure 1, where AB and CD represent 
the chords of the wing pair. During the opening phase, the wings are pivoted about the 
point A ,  while during the spreading phase, the wings separate and move apart. We 
shall be concerned with the opening phase, and shall consider motion which starts 
from the ‘clap’ position which corresponds to a(0) = 0, where a(t)  is half of the opening 
angle as defined in figure 1. It must be pointed out that in addition to the original 
application to  the study on the hovering of the tiny parasitic wasp Elacarsia (Weis-Fogh 
1973), recorded data on the widespread use of the clap-fling mechanism by the larger 
as well as the smaller insects are abundant. In particular, the hind-wing pair ofLocusta 
migratoria is observed to undergo such a process even in forward, climbing flight, 
which is apparently also responsible for the noise production (Cooper & Baker 1977). 

Lighthill (1973, 1975) presented a two-dimensional inviscid analysis of the opening 
phase, and also an examination of the modification of that analysis due to a leading- 
edge separation bubble. The latter appeared to give a rather weak effect of the leading- 
edge separation on the induced circulation. Subsequent experiments by Maxworthy 
(1979; also 1981), however, show a substantial effect of the leading-edge separation. 
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FIGURE 1. Illustration of the two phases in the Weis-Fogh mechanism. 

The present work applies to this problem the model of a concentrated growing vortex 
pair, with feeder sheets, introduced and used rather successfully more than two 
decades ago by Edwards (1954) for slender delta wing problems, through an unsteady 
analogy. The model was extended to more general cases by Cheng (1954), where 
reasonable agreement of the nonlinear lift predicted by this model with the experiment 
of Winter (1936) is shown for rectangular wings with aspect ratio down to 1/30. I n  the 
present application, the vortex strength and vortex-centre location, obtained analyti- 
cally for small time and numerically for large time, also agree rather well with the 
corresponding sequential photographs and the estimate of the vortex strength, made 
by Maxworthy (1979) for his mechanical model. 

Shed vortices from a salient edge and their roll-up have been studied quite success- 
fully by Chorin & Bernard (1973), Moore (1974), Sarpkaya (1975), Clements & Maul1 
(1975), Fink & Soh (1978), Evans & Bloor (1977), Katz & Weihs (1978), and others, 
employing vortex-discretization methods. These treatments should yield good 
approximations to the problem a t  hand, although strictly speaking, none mentioned 
above may claim to approach the (inviscid) rolled-up sheet solution without empiricism. 
While the single-vortex model adopted here would be inadequate if the shed vorticity 
in the real flow changed sign, or if the sheet did not roll up, its adequacy appears to be 
well supported by laboratory observations for the present study; the relative 
simplicity enjoyed by the model renders much of its analytical properties tractable, 
as shown below. The model considered here may provide an alternative method for 
determining the strength and the location for the ‘nascent vortices’ essential to most 
existing vortex-discretization schemes. More recently, Guiraud & Zeytounian ( 1  980) 
have developed an asymptotic theory for the spirally rolled-up vortex sheet and 
propose an analytical algorithm for computing the inviscid core. The present model 
corresponds to the outer solution in Guiraud & Zeytounian’s theory. Their comparison 
remains to be studied. 

I n  passing, we note that significant effects of vortex separation from leading edges 
of swept or delta wings are well known (Edwards 1954; Cheng 1954; Rott 1956), but 
they are not of first-order importance as long as these vortices lie close to the leading 
edges. I n  the analysis to  follow, wherein the vortices are allowed to drift far away 
from the edges and to grow continuously, their circulations will be seen to be com- 
parable to, or even greater than, the corresponding values of the unseparated potential 
model. 
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FIGURE 2. Mapping boundaries from z-plane to [-plane. 

2. Analysis 
2.1. Lighthill's solution : closed-form expressions 

Following Lighthill (1973), we transform the problem from the physical z-plane to the 
[-plane with 

(1) 
c-1 a l n 5 - u  201 % = k ( - )  a =  1-- 

dz [ + 1  5+a' n' 

where k is a constant determined by the half-opening angle a and the chord length c 
(cf. figure 2). The complex potential W, = satisfying the instantaneous im- 
permeable boundary condition on the wing AB in figure 2 and bounded everywhere is 

where Q = &(t)  is the instantaneous angular velocity of the wing. From this the 
potential jump across the wing a t  A can be determined as 

r = Qc2g(a). (3) 

Lighthill (1973) gave a numerical representation of g(a); an explicit value may, 
however, be found, and is given below. The relations between the z and 6 as well as 
the relation between W, and 5 are written in closed form as 

From ( 5 ) ,  one finds 

g(a) = ( 1-2-  ;)I 2(sin2a) (;)""/" - (1 - ; )2-2"/n* 
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FIGURE 3. Illustration of the shed-vortex strength and location in the z-plane. Note the left- 
hand side of the sketch corresponds to the flow region on the lower side of the wing. 

We note that I? is a function only of the instantaneous value of Q and a; thus it is 
independent of the history of the motion. The history, however, will be manifest 
through vortex shedding in the present model. 

2.2. The vortex-shedding model 
In our analysis, we adopt a model in which the total vorticity shed is concentrated in 
the single vortex a t  x = zo whose circulation r0 is allowed to increase with time 
(cf. figure 3). This requires feeding of vorticity, and results in a non-vanishing pressure 
across a diaphragm (cut-line) of the unsteady potential. The resulting complex 
pot>ential in the c-plane may then be represented by 

ir Y - Y o  
2r c - c o .  W = Wl+ -1n- 

In  order to satisfy momentum conservation in the crudest approximation, the total 
of forces on the vortex and the diaphragm must be zero. If the branch cut connects zo 
(vortex position) with z b  (wing-tip position), the complex force on the diaphragm is 
given by 

PI = -pr,i(Z,-zb), (8) 

where r, is the strength of the shed vortex. 
Similarly, the force on the vortex is given by 

F~ = pro v*i, (9) 

where V* is the velocity of the local flow relative to the vortex, and is defined by 

and the condition of a zero net force becomes 

where 



The separation vortex in the Weis-Fogh mechanism 467 

The primes denote derivatives with respect to 5. Hence the terms that appear in 
brackets in (1 1) can be written as 

where dW, dx = ___ sin2a nlc2 {(<-1+2a)[1- ( g ) ' - 2 a ] + 2 ( 1 - 2 3 5  

and z' and z" may be determined from (1). 

velocity a t  the edge, we impose a Kutta condition at  the edge with the requirement 
Since the shedding of vorticity should result in the elimination of the infinite 

_ -  - 0  a t  < = a .  
dW 
d 5  

For this problem the Kutta condition takes the form 

i - 2 q n  ir, c o  - c o  - -- 2k2R ~ - 
sin 2a 27T (1 - 2a/n- 5,) (1 - 2a/7T- C,) 

The governing equation for the motion of the vortex then becomes 

Equation (19) with (I), (4), ( 5 )  and (18) would yield definitions of zo and Po as functions 
of time provided that the history of the wing movement z b ( t )  is given, and suitable 
initial values of zo are prescribed. 

The shed vorticity corresponding to various forms of a( t )  could be investigated. For 
example, if initially a(t) =+ 0, Q(t)  $1 0, and the vortex is required to start from the 
leading edge, then 

ro/cqo)c2 oc t+, (zo - z b ) / C e i ( - ~ ~ )  oc tQ. (20) 

These results are identifiable with those of Cheng (1954) and Rott (1956). 

2.3. Behaviour when a < 1 

The early stage of the flow development in the case which starts with the wing in the 
fully clapped position (a(0) = 0) is of interest in the present study. We shall consider 
the case where the angular acceleration is initially finite, which was also the case 
studied in Maxworthy's experiments. For convenience, we define e = a/n, and shall 
be concerned first with the range of small E .  

We note that as e approaches zero, <, - 1 and Q - a both go to zero, since the vorticity 
is assumed to start from the leading edge. If <, - 1 - ben and if ro is non-decreasing, 
it can be shown that n must be greater than 4;  that r ; ld[ (z ,  - z b ) r O ] / d t  is of the order 
of en-4 if n < 1, and of the order of €4 log E if n > 1. Hence, the left-hand side of (19) 
is zero or finite as e approaches zero. Several of the terms on the right-hand side of (19) 
can be seen to be singular as E approaches zero, and a cancellation is necessary in order 
to balance the left-hand side. 
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The right-hand side of (19) has the representation 
- 

2 -- € € - - 1  1 
- i ~ z ,  + ir, 1 - - + - + - 

[@+l CrJ-1 C0-1+2e Co-Co 

+- 1 c o  - go - [ ( ~ o - l + 2 c )  ( 1 -  (k: =- :))'-"+ 2(1- 2 4 ,  (21) 
2E (lo- 1 + 2 4  ( l o -  1 + 2E) 

(z)zo = k-l(&) z 1 
z o - 1  

co- 1 co- 1 + 2c' 
where 

(23) 
iro 2 k 2 ~ ( 1  - 2 4  (lo - 1 + 2 4  (lo - i + 2 4  

277 sin 2 7 ~ ~  l o  - c o  
- -- 

The only expansion that has been found to provide the proper balancing of the left- 
and right-hand sides of (1  9) consistent with 6 < 1 is of the type 

1 9(Q- 1) N - 3 8  

3(lo- 1) - J 2 d .  
(24) 

The corresponding position of the vortex is given by 

x o  - C ( I  +e)  (&(I - e ) ) c ( ~  +$€In 2e+icarctan ( -4J2e-4)) )  (25) 

subject to  error at most O(d1ne). It is understood that the angle defined by the 
inverse tangent is in the second quadrant. For c < 1, this angle is approximately in, 
so that the term ic arctan ( - 442e-*) tends to @en = iia. Since z b  = ceia, and, for 
small a, zo = ce-gia the vortex is accordingly midway between the initial and in- 
stantaneous position of the wing tip, subject to a relative error O(d1ne). 

Note that the strength of the shed vortex starts with a finite value for the case 
considered. In  fact, if Q - pt, then 

ro c 2 ( T r p ) *  + 0,  (26) 

which signifies a very rapid build-up of the vortex strength during the initial phase 

Consider next the effect of the shed vorticity ro on the circulation about one segment 
of the wing. The additional circulation due to the shed vortex can be evaluated simply 
in the <-plane from the change in potential between points A ,  and A ,  due to ro, by 

(cf. 54). 

where 1 and rn are respectively the real and imaginary parts of c, and y is the angle in 
the <-plane shown in figure 4. Thus, for small angle, A$ N IFo. 

The above result differs from the conclusion of Lighthill (1975)  that  the effect of 
shed vorticity on the induced circulation would be small. This difference is in the 
placement of the shed vortex, which results in the difference in the value of y. Lighthill 
assumed that both m / (  1 - 1) and m/(  1 + I) would be small compared with one, whereas, 
from the present analysis, m/(  1 - 1 )  is found to be large for small values of e,  and y is 
consequently close to in. With this model, the vortex does originate a t  the leading 
edge, but i t  moves away from the wing in such a way that lo - 1 is initially imaginary. 
The result of this behaviour is that, for small opening angles, the circulation about 
each half-wing is increased by half of the strength of each shed vort,ex. 
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FIGURE 4. Illustration of the angle y in the [-plane. 
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FIGURE 5 .  Test of stability of the solution obtained for small E with respect to 
differences in initial data. 

2.4. Integration to large t 

Equation (19), with the explicit form for its right-hand side given by (21), together 
with the Kutta condition (23), can be integrated numerically forward in time t from 
a given initial value of co a t  a chosen t = to. For the present purpose, we choose a small 
enough to so that the initial data can be described with sufficient accuracy by the 
asymptotic solution for small t in Q 2.3. The type of small-time solution will depend on 
the early behaviour of Z. Specific numerical integrations have been performed for the 
history of a( t )  corresponding closely to the laboratory mechanical model studied by 
Maxworthy (1979), in which the a(t)  history has a non-zero initial angular acceleration 
(cf. Q 3 and figure 6). 

The small-time solutions corresponding to (24) are input as initial data. Small 
differences in the initial data are purposely introduced in some trial runs to confirm 
stability. I n  figure 5 ,  9(co-  1)  ( Z E ~ ) - &  is plotted against time for various initial con- 
ditions. The results are seen to converge to a common value by t = 1.5. I n  these curves, 
initial real parts of c0 - 1 are all close to unity, differing from unity by amounts com- 
parable to 



470 

3 -  

R. H .  Edwards and H .  K .  Cheng 

o Maxworthy’s (1979) 
measurements 

0 
1 2 3 4 5 

Time (s) 

FIGURE 6. Comparison of the approximate representation of n(t) with Maxworthy’s 
record of the opening angle. 

3. Comparison with experiment 
Maxworthy (1979) reported vortex measurements at two values of Reynolds 

number, one a t  Re = 13000 and the other a t  Re = 32. Since the foregoing analysis is 
applicable primarily to higher-Reynolds-number phenomena, we will compare the 
results of this study with his case where Re = 13 000. I n  this connection, one may recall 
the widespread use of the clap-fling process by the larger insects noted earlier. 

The time history of the opening angle is shown in figure 6. For calculational purposes, 
we approximate this history over the major portion of the time by 

R = 0*5847trad/s 

= 0.971 rad/s 
(t  < 1.66 s) 

( t  > 1-66 s ) .  

Equation (19) was integrated from t = 0.4 s, corresponding to s = 0.0149, with the 
small-s approximation of (24) used a t  that  point. Comparisons of the values of I’ with 
Maxworthy’s measured values and with Lighthill’s value with no separation are 
shown in figure 7 .  Here, since Q is a function of the opening angle, the theoretical 
values of Lighthill have been multiplied by Q, and the curves display the values of 
r/c2 rather than the dimensionless I’/c2Q. In  Maxworthy (1979) the results had been 
plotted as I’/c2fi, where was an average value of Q taken to  be approximately 
1-15 rad/s, so that the experimental r/c2 plotted here is 1.15 times his I’/c2D. As can 
be seen, the measured values of I’ are well above the inviscid, non-separated values, 
while our model results are within the error estimates of Maxworthy’s measurements 
u p t o a  = 100”. 
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3 ill 

Experimental  values of F/cz 
inferred from Maxworthy (1979) 

/ I  

We note that the value of y of the theory (cf. (27)) was found to stay close to &r 
throughout the process; accordingly, the change in circulation over each half-wing is 
closely approximated by $ F o ( t ) .  

Interestingly, both the present theory and Maxworthy's (1 979) laboratory obser- 
vations indicate that, unlike the results for the unseparated-flow model, the circulation 
r in question does not decrease with increasing opening angle, even a t  01 = 90" and 
beyond. Thus it may seem advantageous for a hovering insect to commence the 
spreading phase a t  an opening angle as large as 90" in order to gain a high initial 
circulation, although it may decrease subsequently as a result of vortex shedding. 

A peculiar feature of the present solution is the finite initial vortex strength F0, 
proportional to the initial angular acceleration E ( 0 )  or n(O), which may be interpreted 
as indicating an extremely high initial growth rate, as noted in $2.3.  This notion 
appears to be consistent with the relatively high values of I? inferred from Maxworthy's 
laboratory data (open circles) for the smaller values of 01 in figure 7. At an extremely 
small opening angle, an inviscid model is expected to break down, and the initial flow 
data for the subsequent inviscid calculation should be provided for by a viscous-flow 
solution. Recirculatory flow patterns in the interior of a corner are possible solutions 
to the Stokes equations (Moffatt 1964), therefore admissibility of a ro(0) =I= 0 to the 
present inviscid model should not be too surprising. We also recall in this connection 
that stability of our small-a solution has been tested and confirmed in $ 2.4. 

Figure 8 shows the predicted sequential locations of the vortex centre (indicated by 
white crosses), superimposed on the corresponding photo records furnished by 
Professor Maxworthy. Considering the rather idealized representation of the single- 
vortex model, the agreement must be considered to be encouraging. 

One may recall from $2.3 (25), that a t  small 6, the vortex centre stays close to the 
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FIGURE 8. The vortex-centre location (white crosses) of the shedding-vortex solution marked 
against Maxworthy's (1979) photo record. 

bisector of the half-opening angle; this is observed from the photo records to hold up 
to CI = 45". For larger angles (a  > 45"), the vortex position was found to shift along a 
line which makes an angle of about $a with the centre line. 

4. Concluding remarks 
Lighthill's (1973, 1975) analysis of the Weis-Fogh circulation-generation mechanism 

is extended to allow for the treatment of vortex shedding from the salient edges. The 
basic vortex-shedding model employed is that  introduced earlier by Edwards (1954), 
extended and studied by Cheng ( 1954) and Rott (1956). Applied to the present problem, 
the vortex shedding is shown to have an important influence on the flow field. Con- 
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sequential to the separation, the circulation on each member of the wing pair is signifi- 
cantly augmented over most of the range of the opening angle, thus greatly enhancing 
the Joukowski lift as perceived originally by Weis-Fogh (1973). The growth rate of the 
vortex strength as well as the vortex-centre movement predicted by the present 
analysis are found to be consistent with laboratory data in the higher-Reynolds- 
number case reported by Maxworthy (1979), within the margin of experimental errors. 

Whereas the key to  the success of Weis-Fogh’s (1  973) clap-fling mechanism is the 
circulation r achieved by each wing a t  the end of the opening phase, its significance 
lies entirely on the influence of this I’ on the subsequent l i f t  development during the 
spreading phase, which is not determined by the initial Joukowski lift p U r  
alone (where U is the instantaneous relative velocity). If the vortex produced by 
opening is not consistent with that required to give the quasi-steady lift during the 
fling process, then either some vorticity will be shed or more will be produced by 
leading-edge separation. With the presence of a wing on the other side and the shed 
vorticities from both, it  is not altogether clear, without further analysis, whether or 
not this model insect wing may indeed serve as a lift generator far superior to those in 
classical aerodynamics (Wagner 1925). Of no less importance is the evaluation of the 
force experienced by, as well as moment and powerrequiredof, an insect during the open 
phase of this model. These answers will again depend on history of the motion in the 
presence of shed vortices, and can be calculated as an extension of the present analysis. 

This study was supported by the U.S. National Science Foundation, Engineering 
Division, Contract Number CME-7926003. We would like to express our deep appreci- 
ation of the valuable comments and helpful suggestions given on this study by 
Professor Sir James Lighthill and Professor T. Maxworthy, who also furnished 
some of the original data and photo records of his previous work. 
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